<table>
<thead>
<tr>
<th>Study ID</th>
<th>Start Date</th>
<th>End Date</th>
<th>Status</th>
<th>Domain</th>
<th>MeSH Terms</th>
<th>Investigator(s)</th>
<th>Location</th>
<th>Summary</th>
<th>Patients recruited</th>
<th>Participants aged</th>
<th>Gender</th>
<th>Arm</th>
<th>Treatments</th>
<th>Control(s)</th>
<th>Endpoints</th>
<th>Outcomes</th>
<th>Other details</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Study Title: The impact of obesity on various aspects of metabolic health in children and adolescents

Study Purpose: To evaluate the metabolic effects of obesity on various aspects of metabolic health in children and adolescents.

Investigator: Dr. Handrean

Location: St Mary's

Summary: The study aims to assess the impact of obesity on metabolic health, with a focus on lipid metabolism and insulin resistance.

Patients recruited: Total of 114 participants recruited.

Participants aged: Mean age 12 years.

Gender: 53 males, 61 females.

Arm: Open-arm, blinded, randomized controlled trial.

Treatments: Obese children were randomized to a dietary intervention group or a control group.

Control(s): Placebo-controlled.

Endpoints: Primary endpoints include changes in body mass index (BMI), fasting glucose, and insulin resistance.

Outcomes: The study outcomes will include changes in BMI, fasting glucose, and insulin resistance over the 12-month study period.

Other details: The study will also assess the impact of obesity on quality of life and psychological well-being.

Study Title: The role of epigenetics in childhood obesity

Investigator: Prof. Smith

Location: The Children's Hospital

Summary: The study aims to investigate the role of epigenetics in childhood obesity.

Patients recruited: Total of 70 children recruited over 2 years.

Participants aged: Mean age 8 years.

Gender: 35 males, 35 females.

Arm: Open-arm, blinded, randomized controlled trial.

Treatments: Children were randomized to an intervention group or a control group.

Control(s): Placebo-controlled.

Endpoints: Primary endpoints include changes in body mass index (BMI) and waist circumference.

Outcomes: The study outcomes will include changes in BMI and waist circumference over the 2-year study period.

Other details: The study will also assess the impact of epigenetic modifications on adipose tissue function and metabolism.

Study Title: The effects of genetic variants on metabolic health in adults with type 2 diabetes

Investigator: Dr. Johnson

Location: The University of Manchester

Summary: The study aims to investigate the effects of genetic variants on metabolic health in adults with type 2 diabetes.

Patients recruited: Total of 55 participants recruited.

Participants aged: Mean age 45 years.

Gender: 28 males, 27 females.

Arm: Open-arm, blinded, randomized controlled trial.

Treatments: Participants were randomized to an intervention group or a control group.

Control(s): Placebo-controlled.

Endpoints: Primary endpoints include changes in fasting glucose and insulin resistance.

Outcomes: The study outcomes will include changes in fasting glucose and insulin resistance over the 12-month study period.

Other details: The study will also assess the impact of genetic variants on glucose tolerance and insulin secretion.

Study Title: The impact of a novel gene therapy on metabolic health in patients with lipoprotein lipase deficiency

Investigator: Prof. Brown

Location: The University of Leeds

Summary: The study aims to investigate the impact of a novel gene therapy on metabolic health in patients with lipoprotein lipase deficiency.

Patients recruited: Total of 5 participants recruited.

Participants aged: Mean age 10 years.

Gender: 3 males, 2 females.

Arm: Open-arm, blinded, randomized controlled trial.

Treatments: Participants were randomized to an intervention group or a control group.

Control(s): Placebo-controlled.

Endpoints: Primary endpoints include changes in plasma triglycerides and cholesterol.

Outcomes: The study outcomes will include changes in plasma triglycerides and cholesterol over the 24-month study period.

Other details: The study will also assess the impact of the gene therapy on lipid metabolism and cardiovascular outcomes.

Study Title: The effect of a lifestyle intervention on metabolic health in patients with familial hypercholesterolemia

Investigator: Dr. White

Location: The University of Liverpool

Summary: The study aims to investigate the effect of a lifestyle intervention on metabolic health in patients with familial hypercholesterolemia.

Patients recruited: Total of 45 participants recruited.

Participants aged: Mean age 35 years.

Gender: 24 males, 21 females.

Arm: Open-arm, blinded, randomized controlled trial.

Treatments: Participants were randomized to an intervention group or a control group.

Control(s): Placebo-controlled.

Endpoints: Primary endpoints include changes in fasting glucose and insulin resistance.

Outcomes: The study outcomes will include changes in fasting glucose and insulin resistance over the 12-month study period.

Other details: The study will also assess the impact of the lifestyle intervention on lipid metabolism and cardiovascular outcomes.
<table>
<thead>
<tr>
<th>Protocol Title</th>
<th>Commercial Sponsor</th>
<th>Funded by</th>
<th>Lead Contact(s)</th>
<th>Protocol Status</th>
<th>End Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCTREOTIDE BIOEQUIVALENCE</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>ORAL OCTREOTIDE META 5534</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 5674 (APITOPES)</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3316 CORTENDO</td>
<td>Academic</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>CCRN 2879 (CUSHING'S)</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>CCRN 995 (EUROPEAN ADRENAL AIP)</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>THE CHRISTIE GENOME</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>GENETIC REACTIONS (MOLGEN)</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>CHIL 5590 COMET</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>DISEASE</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>OBE3002: CANAGLIFLOZIN, PHENTERMINE, PLACEBO IN NON-DIABETICS</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>OBE3001: CANAGLIFLOZIN, PHENTERMINE, PLACEBO IN T2DM</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>OBEST - IN SET-UP</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>Akt-induced apoptosis in Xenopus laevis tadpoles</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>Septin-1: A study in Cystic Fibrosis Patients</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>SEPARATE - A study in Cystic Fibrosis Patients</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3297.17E22</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3297.17E23</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3297.17E24</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3297.17E26</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3297.17E27</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3297.17E28</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3297.17E29</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>META 3297.17E30</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
</tbody>
</table>

Notes:
- **Commercial** indicates the protocol is sponsored by a commercial entity.
- **Academic** indicates the protocol is sponsored by an academic institution.
- **In set-up** indicates the protocol is in the planning stages.
- **Recruiting** indicates the protocol is actively recruiting participants.
- **Closed in follow-up** indicates the protocol has completed and is in the follow-up phase.
- **On hold** indicates the protocol has been paused.

Protocol Status:
- **Commercial** indicates sponsorship by a commercial entity.
- **Academic** indicates sponsorship by an academic institution.

End Date:
- The end date is the date on which the protocol is expected to conclude.

Notes:
- Additional notes may include specific details about the protocol's progress or status.
A multicentre, multinational, randomised, parallel-group, placebo-controlled (double blind) and active-controlled (open) trial to compare the efficacy and safety of once weekly dosing of NNC0195-0092 with once weekly dosing of placebo and daily Norditropin® FlexPro® in adults with growth hormone deficiency for 35 weeks, with a 53-week extension period.

Claire Higham
Metabolic & Endocrine
Closed to recruitment
Commercial

Follow-Up Study in Patients with Acromegaly Previously Participating in Chiasma Study CH-ACM-01
Peter Trainer
Metabolic & Endocrine
Closed to recruitment
Commercial

A multicentre, multinational, randomised, open-labelled, parallel-group, active-controlled trial to compare the safety of once weekly dosing of NNC0195-0092 with daily Norditropin® FlexPro® for 26 weeks in previously human growth hormone treated adults with growth hormone deficiency

Claire Higham
Metabolic & Endocrine
Closed to recruitment
Commercial

Acromegaly & Multijoint Disease
Characterisation of the impact of joint disease on patients with acromegaly
The Christie and SRFT
Pennine
Lipids
Hypertriglyceridaemia cause and effects
Hypertriglyceridaemia: therapeutic targets, genetic causes, and associated neuropathy
Metabolic and endocrine disorders
Open
Academic
01/12/2013
01/12/2020
3
3
Acromegaly & Multijoint Disease
An Open-Label Extension Study of Volanesorsen Administered Subcutaneously to Patients with Familial Chylomicronemia Syndrome (FCS)
Dr Basil Issa
Metabolic and Endocrine
Open
Commercial
31/01/2017
1

UHSM Metabolic